Letters to the Editor ## ¹H, ¹⁵N and ¹³C resonance assignments of a protein involved in the autophagy process, At4g21980.1 from *Arabidopsis thaliana* DOI 10.1007/s10858-005-0058-3 APG8a (At4g21980.1) from *Arabidopsis thaliana* is a single-chain protein of 122 amino acids (13.7 kDa) involved in the autophagy process, which plays a key role in protein recycling during starvation and senescence (Doelling et al., 2002). We have initiated an NMR investigation of recombinant [U⁻¹³C, ¹⁵N]-At4g21980.1. Solubilization of the protein required a specialized solvent consisting of 20 mM sodium phosphate, pH 7.0, with 1% glycerol, 0.5 M urea, and 300 mM NaCl (Chae et al., 2004). Dynamic disorder, most notably in 13 N-terminal residues, limited the overall backbone assignment completeness: ¹H^N (85%), ¹H^α (79%), ¹⁵N (86%), ¹³C^α (86%), ¹³C^β (81%), and ¹³C' (86%). Supported by the NIH Protein Structure Initiative (GM P50 GM64598). NMR data were collected at the National Magnetic Resonance Facility at Madison. BMRB deposit with accession number 6610. References: Doelling et al. (2002) *J. Biol. Chem.*, **277**, 33105–33114; Chae et al. (2004) *Protein Prod. Purif.*, **34**, 280–283. Young Kee Chae^a, Kyunghee Lee^a, John L. Markley^{b,*} ^aDepartment of Applied Chemistry, Sejong University, Seoul, Korea 143-747; ^bCenter for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, WI, 53706-1544, U.S.A *To whom correspondence should be addressed. E-mail: markley@nmrfam.wisc.edu **Supplementary material** to this paper is available in electronic format at http://dx.dio.org/10.1007/s10858-005-0058-3. ## Backbone NMR assignment of the C-terminal haemopexin-like domain (HPLD) of human matrix metalloproteinase MMP-13 DOI 10.1007/s10858-005-0463-7 MMP-13 is a matrix metalloproteinase involved in the degradation of the extracellular matrix and is important in human breast cancer pathology and in arthritic processes. The specificity of MMP-13 to cleave peptide bonds of native triple-helical collagen is mediated by the C-terminal haemopexin-like domain (HPLD). To gain further insight into the interaction of the HPLD domain with collagen, an NMR investigation was initiated of the HPLD domain L265-C471, where a crystal structure is available (Gomis-Rüth et al., 1996). MMP13-HPLD expressed in *E. coli* was refolded from inclusion bodies. 3D heteronuclear NMR experiments with 2 H, 13 C, 15 N-labelled HPLD were used to assign the backbone and C_{β} atoms. Only a partial assignment was possible, since 160 signals out of 191 expected signals were observed in the HSQC spectrum (84%). The observed signals have been assigned almost completely (96%). BMRB deposit with Accession No. 6617. Reference: Gomis-Rüth et al. (1996) J. Mol. Biol., 264, 556-566. Doris M. Jacobs, Susanne Grimme, Bettina Elshorst, Barbara Pescatore, Martin Vogtherr, Marco Betz, Ulrich Schieborr, Thomas Langer, Krishna Saxena, Harald Schwalbe* & Klaus Fiebig Institut für Organische Chemie and Chemische Biologie, Zentrum für Biomolekulare Magnetische Resonanz, Goethe-Universität Frankfurt, D-60439, Frankfurt, Germany *To whom correspondence should be addressed. E-mail: schwalbe@nmr.uni-frankfurt.de **Supplementary material** to this paper is available in electronic format at http://dx.dio.org/10.1007/10858-005-0463-7.